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A b s t r a c t. The numerical modelling of transport phenom-
ena in porous media often requires a compromise between grid 
precision and the accuracy of simulation results. This study dem-
onstrates the impact of errors on the accuracy of the reproduction 
of the actual pore space by the numerical grid on the estimated 
values of the saturated water conductivity. Four types of compu-
tational grids with varying levels of complexity were prepared for 
each of the 12 tomographic images of the porous specimens. The 
specific surfaces and total porosities were calculated for each of 
the meshes and compared with those parameters calculated for 
binarized tomographic images. Simulations of steady flow were 
performed on the computational grids, and the saturated water 
conductivity values were calculated. It has been shown that an 
insufficiently accurate mesh only reproduces the largest pore 
spaces in the analysed sample, which most often leads to an 
underestimation of the water conductivity coefficient. The follow-
ing criterion for the optimal accuracy of the computational grid is 
proposed, it is based on the voxel size of the tomographic images 
of the porous media: the minimum size of the cell in the mesh 
used for simulations has to be at most two times the size of the 
voxel used in the tomographic scans of the porous medium.

K e y w o r d s: porous media, numerical modelling, hydraulic 
conductivity, mesh accuracy

INTRODUCTION

An increase in computing capabilities has made it pos-
sible to directly model transport processes in porous media. 
Water flow in soils (Dal Ferro et al., 2015; Khan et al., 2012; 
Larsbo et al., 2014) hydraulic properties and state vari-
ables and measures of preferential transport. Experiments 
were carried out under near-saturated conditions on undis-
turbed columns sampled from four agricultural topsoils 
of contrasting texture and structure. Macropore network 
characteristics were computed from 3-D X-ray tomogra-
phy images of the soil pore system. Non-reactive solute 
transport experiments were carried out at five steady-state 
water flow rates from 2 to 12 mm h-1. The degree of pref-
erential transport was evaluated by the normalised 5% 
solute arrival time and the apparent dispersivity calculat-
ed from the resulting breakthrough curves. Near-saturated 
hydraulic conductivities were measured on the same sam-
ples using a tension disc infiltrometer placed on top of the 
columns. Results showed that many of the macropore net-
work characteristics were inter-correlated. For example, 
large macroporosities were associated with larger specific 
macropore surface areas and better local connectivity of 
the macropore network. Generally, an increased flow rate 
resulted in earlier solute breakthrough and a shifting of 
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the arrival of peak concentration towards smaller drained 
volumes. Columns with smaller macroporosities, poorer 
local connectivity of the macropore network and smaller 
near-saturated hydraulic conductivities exhibited a greater 
degree of preferential transport. This can be explained by 
the fact that, with only two exceptions, global (i.e. sample 
scale, rocks (Andrä et al., 2013) and other porous media is 
a simulated phenomenon belonging to a broader class of 
transport processes, which also includes transport of: heat 
(Chen et al., 2017), gases (Zuo et al., 2017) and chemical 
compounds (Jarvis, 2007) fissures and interaggregate voids 
as well as multiphase transport (Horgue et al., 2015).

Saturated water conductivity is one of basic macSat-
urated water conductivity is one of basic macroscopic 
hydrological characteristics of porous media. It is deter-
mined by soil water flow processes occurring at the 
microscale. There are well-established techniques for the 
direct modelling of saturated water conductivity (SWC) 
in geological porous media based on X-ray computation-
al tomography (CT) imaging and the Navier-Stokes (NS) 
equations, where the transport processes are simulated in 
a geometry which represents the real porous media with 
a high degree of accuracy. Navier-Stokes equations may be 
discretized using different approaches: the finite element 
method (FEM) (Lesueur et al., 2017), the finite difference 
method (FDM) (Mostaghimi et al., 2013; Ramandi et al., 
2017) and the finite volume method (FVM) (Pereira Nunes 
et al., 2015; Starnoni et al., 2017; Taylor et al., 2017). 
Another approach, which is useful in porous media mod-
elling, is the Lattice-Boltzmann method (LBM), which is 
based on a quasi-microscopic approach instead of the dis-
cretization of macroscopic continuum equations (Chen, 
Doolen, 1998). The LBM is used for modelling in rocks 
(Andrä et al., 2013) as well as in soils (Baveye et al., 2017).

The process of direct modelling based on CT imaging 
consists of the following steps: a CT scan, 3D image recon-
struction, image processing, and binarization, pore space 
geometry reconstruction, the generation of a computational 
mesh, the simulation itself, and the post-processing of the 
simulation results. As yet, there is no single established 
workflow and most of these steps may be performed in 
multiple ways; however, each step requires optimization 
and may have an impact on the results of the simulation. 
Numerous studies have been presented, which estimate 
the impact of various aspects of direct modelling on the 
quality of 3D images and more particularly, their impact 
on the numerical calculation of hydraulic conductivity in 
porous materials. These aspects include, among others: CT 
reconstruction, noise reduction, changing the bit depth of 
the image (Houston et al., 2013; Pot et al., 2020; Schläuter 
et al., 2014), and image segmentation (Baveye et al., 2010; 
Gackiewicz et al., 2019; Hapca et al., 2013; Houston et 
al., 2013; Iassonov et al., 2009; Leu et al., 2014; Schläuter 
et al., 2014; Wang et al., 2011). The estimated saturated 
water conductivity varied due to threshold errors of up to 

32% for sandstone (Leu et al., 2014) and for soils, the value 
found for one threshold was over 4 times higher than it was 
for another (Gackiewicz et al., 2019). Also, the impact of 
the voxel resolution on the estimation of conductivity was 
investigated. Borujeni et al. (2013) evaluated numerous 
LBM and FEM grids generated for an artificial 3D image 
at different resolutions. A similar study, based on different 
modelling approaches, was presented by Shah et al. (2016) 
for sandstone permeability estimations; it used pore net-
work modelling and the LBM. Variations in permeability 
have been demonstrated for four sandstone images of dif-
ferent sizes and resolutions (Bazaikin et al., 2017; Borujeni 
et al., 2013; Guan et al., 2019; Shah et al., 2016). Guan et 
al. (2019) investigated the impact of a decrease in image 
resolution (simulated by pixel binning) on estimates of 
permeability. 

Despite the obvious impact of the resolution of the CT 
image, which is directly linked to the accuracy of pore space 
representations in permeability estimations, numerical 
mesh generation may also influence permeability estima-
tion results. To date, this has not been investigated in the 
literature. Only one attempt has been made to explore this 
issue, in which a comparison of two mesh refinement levels 
were applied to the tomography image of only one sand-
stone sample (Guibert et al., 2015). This study indicated 
that numerical mesh generation may be an important issue 
in the estimation of numerical permeability as the relative 
error of the permeability estimate decreased from 50% for 
the first refinement level to 15% for the second. 

The aim of this study is to analyse the impact of the 
accuracy of the reproduction of the actual pore space by 
a numerical mesh on an SWC estimate with direct model- 
ling. Understanding this relationship would help research-
ers to find the most relevant compromise between the 
computational complexity of a model and the accuracy 
of an estimate. For this reason, a simplified method of the 
estimation of error is proposed in this work. The study is 
based on an analysis of numerous samples with four differ-
ent mesh refinement levels.

MATERIALS AND METHODS

Six samples were examined, which included four dif-
ferent fractions of sieved sand, and two sandstone cores. 
The sand used in the samples was obtained from the Vistula 
River near Puławy (Poland). The three samples (s1, s2, 
s3) contained sieved sand with grain sizes in the ranges of 
0.08-0.16, 0.16-0.32, and 0.32–0.5mm, while the fourth 
(s4) contained sand sieved through a 0.5 mm sieve and 
additionally milled in a planetary mill (Pulverisette 6 clas-
sic line, Fritsch, Germany, Idar-Oberstein) for 10 minutes. 
The purpose of milling the sand was to increase the fine 
fraction content in the sample, leading to a more complicat-
ed pore geometry which is far more demanding with regard 
to X-ray CT analysis and modelling.
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The particle size distribution (PSD) of the fourth sam-
ple was measured using the laser diffractometry method 
(LDM). A Malvern Mastersizer 2000 (Malvern Panalytical, 
Great Britain) with a measurement range of 0.02 µm to 
2 mm was used to determine the PSD. In order to obtain 
homogeneity in the measured soil suspension, a Hydro 
G dispersion unit was used. The pump speed was set at 
1750 rpm and the stirrer speed was 700 rpm. The light inten-
sity, measured by detectors, was used to calculate the PSD 
according to the Mie theory (ISO 13320:2009, 2009). The 
Mie model parameters include an absorption coefficient 
of 0.1 and a refractive coefficient of 1.52 (Bieganowski et 
al., 2013). The PSD determined for sample s4 is as fol-
lows: clay (< 2 µm) 0.96%, silt (2-50 µm) 6.88% and sand 
(> 50 µm) 92.16%. 

The sample material was poured into polypropylene 
tubes (4 mm i.d.) with low X-ray absorbance to a height 
of 10 mm. The sample was subsequently compacted using 
vibration.

In addition to the four sand samples, two sandstone 
samples (s5, s6) were also prepared. The fine-grained 
sandstone was collected from western Taiwan, Kueichulin 
Formation: Yutengping Sandstone (2 409 m depth) and 
Kuanyinshan Sandstone (2 531 m depth). There were two 
cubes (8x8x8 mm) of each sample.

Both sand and sandstone samples were scanned with 
an X-ray CT microtomograph (GENanotom180S) with a 
180 kV/15 W microfocus X-ray tube. For each sample, two 
scans (a, b) were made. For the sand samples, two distinct 
regions of sand material – the first in the bottom part of the 
tube (a) and the second in the upper part (b) – were scanned. 
The sandstone samples were cut into two pieces from the 
collected cores and each was scanned independently. For 
each scan, a series of 1200 2D radiograms were collect-
ed, with the sample rotating 360° using a rotation step of 
0.3°. Each 2D radiogram was averaged over 15 images for 
sand samples (20 images for sandstone samples) to reduce 
noise. The images were recorded using the detector, which 
has a resolution of 2284x2304 pixels registering images at 
the 14-bit gray-level depth. The X-ray source was operated 
at 90 kV with a 120 μA cathode current for sand samples 
(110 kV, 160 μA for sandstone) and a tungsten exit window. 
Immediately before each scan, a short pre-scan was made 
which lasted for 30 min to pre-heat the sample and mini-
mize the impact of thermal expansion during the scan on 
the reconstructed 3D image. The voxel size obtained from 
these CT scans was 2 µm for sand samples and 2.28 µm for 
sandstone. Due to the nature of the sandstone samples, e.g. 
the larger diameter, there were differences in some of the 
CT scan parameters.

A tomographic reconstruction was performed on a se- 
ries of radiograms using DatosX software (version 2.0.1, 
GE Sensing & Inspection Technologies GmbH, Germany). 

The beam hardening correction was not necessary, although 
the exit window filter was not used during the X-ray scan. 
The received 3D volume was saved as a 16 bit TIFF image. 

For further image processing, ImageJ (version 1.51k) 
software was used. Initially, the brightness of the images 
was adjusted. Following this, the images were saved in an 
8-bit grayscale format to reduce the disk space and RAM 
needed for further processing. For further processing, 
a cylindrical region of interest (ROI) with a diameter of 4.2 
mm and a height of 3.17 mm was chosen. The ROI was fil-
tered twice using a median filter with a 3-pixelkernel size. 
The filtered images were then binarized. The binarization 
was performed using Ridler’s iterative inter-means thresh-
olding algorithm (Ridler, Calvard, 1978).

The total porosity (TP) and the specific surface area 
(SSA) were calculated based on the binarized images. To 
determine the porosity, the Volume Fraction function of the 
BoneJ plugin (version 1.4.2, open-source) for ImageJ was 
used. The total porosity was calculated as the ratio of the 
volume of voxels representing the pores to the total volume 
of the analysed image. The pore surface in a 3D image con-
sists of rectangular voxel walls forming a castellated shape, 
which is significantly different from the actual pore surface 
of the scanned objects, which has an irregular shape. The 
marching cubes algorithm (Ridler, Calvard, 1978), which 
converts the set of voxels into a triangle mesh, was used 
to reproduce the surface of the pores. For this purpose, the 
Isosurface function was used in the BoneJ plugin with the 
“resampling” parameter set to 2, to determine the surface 
area of the pore-solid boundary. Dividing this surface area 
by the total sample volume gives the SSA. The triangulat-
ed representation of the pore space boundary surface was 
saved in a stereolithography (STL) file format for further 
processing in the computational mesh generation proce-
dure. The image-based total porosities and specific surface 
areas were then compared to the same characteristics deter-
mined for the generated meshes.

For each sample, four computational grids that reflected 
the real pore geometry with increasing degrees of accuracy 
were generated based on the same pore space STL repre-
sentation received from the CT. The parameter that varied 
between the grids for each sample was the number of initial 
cells, which determined the minimum size of the numer-
ic grid cell. For each 3D image, meshes were constructed 
using the initial background grids with 10×10×10 (here-
inafter referred to as m10), 20×20×20 (m20), 30×30×30 
(m30) and 40×40×40 (m40) of initial cells (Fig. 1).

As the grid cells are refined five times in the neigh-
bourhood of the pore surface, the size of the initial cells 
directly affects the complexity and accuracy of the mapping 
of the pore space of the final computational grid (Table 1). 
The greater the number of initial cells, the greater the 
final number of cells of the mesh and the time required to 
generate them. Because all of the grids had the same cell 
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division limit during their creation process, the smallest cells 
were in the most detailed grids with the largest number of 
initial cells.

In order to generate the computational grid, the STL 
triangulated surface of the pore space of the samples cre-
ated earlier for the calculation of the specific surface area 
was used. All pre-processing, simulations, and postprocess-
ing were conducted using the OpenFOAM computational 
fluid dynamics (CFD) package. The mesh was generated 
using the blockMesh and snappyHexMesh tools from this 
package. At the beginning, blockMesh generated an ini-
tial base grid that had the form of a cuboid consisting of 
1000, 8000, 27000, or 64000 initial cells (m10, m20, m30, 
or m40). Subsequently, the computational grid was refined 
and adjusted to the shape of the pore geometry saved in the 
STL using snappyHexMesh. 

Adjusting the original mesh to the desired shape defined 
by the pore surface consisted of several stages. Firstly, the 
initial background mesh cells were refined near the pore 
surface. In this study, the cells were refined up to five times. 
Then the cells which did not belong to the flow domain 

defined by the pores were removed. At this stage, the mesh 
consisted solely of cuboids and was an approximated, cas-
tellated representation of the pore space (Fig. 2a). For the 
next step, cells that contained the pore surface were divided 
by that surface and the vertices of the cells were adjusted 
to follow the pore surface as closely as possible. The final 
stage of mesh generation was an iterative process of cell 
quality checks and shape adjustments based on mesh qual-
ity constraints. The flow domain represented by the mesh 
was the pore space determined by the CT of the sample, 
while the remainder of the sample, treated as a non-perme-
able solid body, was simply not included in the generated 
mesh. Finally, the mesh of the desired shape was created 
(Fig. 2b).

Despite the mesh quality constraints enforced during 
the mesh generation procedure, the quality of the final mesh 
had to be checked. The mesh was checked by the check-
Mesh program (part of the OpenFOAM package), which 
calculates the statistics of the mesh (number of elements, 
number of cells of individual types) and performs topolo-
gy and geometry tests. As a part of the geometry tests, the 
parameters of the mesh elements were calculated, such as 
the proportions between the lengths of individual edges, or 
skewness. Cells with an overly high skewness value could 
have an adverse effect on the quality of the simulation and 
were removed. As the number removed did not exceed 
0.003% of the total number of cells, it may be assumed that 
the impact of the deleted cells on the geometry of the whole 
image was negligible.

Numerical calculations were carried out using the sim-
pleFoam program (OpenFOAM package), which solves 
the NS equations for incompressible steady-state flows 
with the finite volume method (FVM) based on the Semi-
Implicit Method for Pressure Linked Equations (SIMPLE) 
algorithm. SIMPLE is an iterative algorithm that was first 
proposed by Patankar and Spalding (Patankar et al., 1972) 
for the numerical solution of the NS equations. As a result 
of these calculations, a discrete spatial distribution was 
obtained for the pressure p and velocity U of the liquid in 
the analysed area.

Fig. 1. Initial background grids of varying complexity (a – m10, 
b – m20, c – m30, d – m40).

Ta b l e  1. Size of initial cells and minimum size of cells in indi-
vidual calculation grids

Calculation
grid

Edge
of initial cell 

(mm)

Minimum edge
of final cell

(µm)
m10 0.40 12.50
m20 0.20 6.25
m30 0.13 4.16
m40 0.10 3.12

Fig. 2. Surface of the numerical grid: a) before and b) after 
smoothing.
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The NS equations comprise the momentum balance 
(Eq. (1)) and the continuity (Eq. (2)), where: u is a veloci- 
ty vector (m s-1), ρ is fluid density (kg m-3), p is pressure 
(kg m-1 s-2), µ is dynamic viscosity (kg m-1 s-1) Navier-Stokes 
saturated conductivity, τ is a strain rate tensor (s-1), F are the 
external forces (kg m s-2), and g is the gravitational acceler-
ation (m s-2) (Eq. (3)):

(1)

(2)

(3)

The simulation requires appropriate boundary condi-
tions. In the computational grid, the faces of the cells are 
assigned one out of a few types of usable patches, which 
have specific boundary conditions. Input and output patch-
es are assigned to the surfaces at the inlet and outlet ends 
of the cylinder, respectively. The other patch, called the 
“sand_boundary”, represents the pore surface of the mod-
elled medium. The initial and boundary conditions were 
determined for the dependent variables pressure p and 
speed U (Table 2). The value of the fluid velocity was fixed 
at 10-5 ms-1, and the pressure was established at 0 Pa on the 
input patch with zero gradient Neuman conditions on the 
output patch. The input and output patches were equivalent 
to the top and bottom portions of the soil sample. No-slip 
boundary conditions were applied to the pore walls. 

The water flow simulation mimics the constant head 
saturated conductivity measurement setup. Saturated water 
conductivity (Ksat, m s-1), can be estimated based on informa-
tion about the pressure difference (Δp, kg m-1 s-2) between 
the input and output patches, the fluid velocity at the input 
patch (U, m s-1) and the flow domain length (Δl, m):

(4)

where: g is the gravitational constant (m s-2) and ρ is the 
fluid density (kg m-3).

Both the mesh generation and the subsequent calcula-
tions were executed in parallel using a message passing 
interface (MPI). For these calculations, a computing cluster 

consisting of 7 nodes was used. Each node had 2 Intel Xeon 
E5-2690 processors, 256 GB RAM, and the operating sys-
tem Centos 7.

The specific surfaces of the generated meshes were 
determined using custom software based on OpenFOAM 
and written for this purpose.

Numerical simulations simply generate a result for a gi- 
ven numerical mesh, model, and boundary conditions. The 
mesh quality is especially important for simulation results. 
Two factors of mesh quality must be considered. First, 
general numerical mesh quality factors like cell skewness, 
cell non-orthogonality, and the cell aspect ratio are taken 
into account during the mesh creation procedure and are 
usually not a problem. The second mesh quality factor is 
mesh precision, which may be understood as the accura-
cy of recovering the pore space geometry from the mesh. 
Unfortunately, the geometry of the pore media is naturally 
very complicated. This causes potential problems for mesh 
precision, in particular, problems with the correct meshing 
of the narrow areas of the pores. 

A method to estimate the impact of mesh inaccuracy 
on simulation results is required. More particularly, for the 
problem of saturated conductivity estimation, the following 
method of error calculation based on observed geometrical 
mesh quality measurements is proposed. These geometri-
cal mesh quality measures are the difference between the 
total porosity of the image and the grid and the difference 
between the specific surfaces of the image and the grid.

In order to estimate the error of the SWC calculation, 
the method proposed is based on the phenomenological 
Kozeny-Carman (KC) equation. The KC equation relates 
the SWC to the total porosity and the specific surface of the 
porous medium. The KC equation was used in the follow-
ing equation from Kuang et al. (2011):

(5)

where: C0 is the Kozeny constant, τ is the tortuosity (-), 
ρ is the liquid density (kg m-3), μ is the dynamic viscosity 
of the liquid (kg m-1 s-1), and g is the gravitational acceler-
ation (m s-2).

Ta b l e  2. Boundary and initial conditions (Ux, Uy, Uz–x-th, y-th and z-th components of U, Un–velocity component normal to the 
output patch)

Variable Initial 
conditions

Boundary conditions

patch “input” patch “output” patch “sand_boundary”

p p = 0 ∇p = 0 p = 0 ∇p = 0

U
Ux = 0
Uy = 0

Uz = 3×10-5

Ux = 0
Uy = 0

Uz = 1×10-5
∇Un = 0 U = 0

 ,



B. GACKIEWICZ et al.478

The margin of error in the estimation of the SWC from 
the KC equation may be calculated using the total deriva-
tive method. The independent variables that have the 
potential to contribute to the error in estimating the hydrau-
lic conductivity in the KC equation are total porosity and 
the specific surface area. It may be assumed that the error in 
estimating the hydraulic conductivity ΔK will correspond 
to the sum of the error related to the uncertainty of porosity 
determination,  and the error related 

to the uncertainty of specific surface determination, 

The equation for the error related to the uncertainty of 
the porosity measurement is:

(6)

and may be written in the form:

(7)

The equation for the error related to the uncertainty of 
the specific surface measurement is:

(8)

and may be simplified to:

(9)

Therefore, the relative error in the estimation of the SWC 
coefficient based on the KC equation (taking into account 
the uncertainty of the porosity and the specific surface mea-
surement) may be written as:

(10)

The value of the total porosity error, Δφ, was assumed to 
be the difference between the total porosity calculated from 
the grid and the total porosity calculated from the bina-
rized image. The specific surface error Δσ was determined 
analogously.

RESULTS AND DISCUSSION

The finest meshes, m20, m30, and m40, were success-
fully generated for all samples. But the coarsest mesh, m10, 
was only successfully generated for the sand samples (s1, 
s2, s3, s4). It was not possible to generate the coarse mesh 
for the sandstone samples (s5, s6). This was due to the nar-
row pore throats in the sandstone material, which did not 
allow for mesh cell generation with the minimum allow-

able mesh size of m10 (Table 1). A prerequisite for creating 
the mesh is an adequate connection between the top and 
the bottom of the pore network. In the tomographic image 
under consideration, when such a connection had a diameter 
smaller than the minimum edge of the finer cells (Table 1), 
the creation of the grid was not possible (Fig. 3).

The final computational mesh complexity, which may 
be understood as the number of cells in the mesh, is an 
important factor for the practical application of the mesh. 
The greater the number of cells that were in the initial back-
ground grid, the greater the number of mesh cells that were 
observed in the final mesh (Fig. 4). The number of cells 
in a mesh generated for a given sample was very different 
depending on whether they were the finest (m40) and the 
coarsest (m10) meshes, reaching a ratio equal to 30 in the 
case of sample s4. Lower values of this ratio of ~10 were 
observed for samples s1a and s1b. In general, the higher 
the value of the SSA of the pores in the sample, the great-
er the differences in mesh complexity between the m10, 
m20 m30, and m40 meshes. This dependence may be eas-
ily explained by taking into account that during the mesh 

Fig. 3. Partially created mesh, where generation failed due to pore 
throats too narrow in comparison with the size of the finest pos-
sible mesh cell. 

Fig. 4. Number of cells in meshes of varying degrees of detail 
generated from tomographic images. 
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generation procedure, the initial cells are refined 5 times 
in the direct neighbourhood of the pore surface, and these 
cells are as small as possible. The greater the distance from 
the pore surface, the lower the refinement level and if the 
distance is high enough, the cells of the initial background 
cell may not even be refined at all.

The time required for mesh generation was related to 
the complexity of the mesh. The time required for mesh 
generation for a given sample was also dependent on the 
initial background grid (Fig. 5). Based on the 44 grids cre-
ated, it may be observed that the relationship between the 
number of cells in the final mesh and the time taken to gen-
erate it is close to linear (Fig. 6).

Meshes generated in different ways but representing 
the same pore medium varied widely in complexity. For 
practical reasons the mesh chosen for each simulation is 
a trade-off between the resources required for mesh gen-
eration and simulation, and the accuracy of the simulation 

results. The prerequisite for a good quality mesh is accurate 
pore geometry representation. Two factors may be used 
to quantify mesh quality, the differences between mesh 
and pore medium: SSA and TP. In an ideal case, exactly 
the same geometry of pore space as that represented in 
the mesh as in the CT image of an examined pore medi-
um would be achieved, and no differences in SSA or TP 
would be observed. But in practice, the geometry of the 
pore medium as reflected by the mesh differs slightly from 
the real sample. This is due to problems with meshing the 
narrow regions of the pores, where the dimensions of the 
pores are smaller than the smallest possible cell permitted 
by the mesh generation procedure. 

Figure 7 shows sample cross-sections for increasing 
levels of mesh complexity (m10, m20, m30, and m40) for 
sample s1a. Meshes with a bigger initial cell size (m10) do 
not fill the pore space well, which is visible in the small 
spaces between grains of sand. For the m10 mesh, this is 
very easily observable between most grains. For the m20 
mesh, these areas still occur frequently but are much small-
er compared to the m10 version. For the m30 mesh, they 
are almost absent – they are only observed in two areas in 
the cross-section shown. The m40 grid appears to repro-
duce the pore space exactly.

In order to quantify the quality of the pore geometry 
representation, the values of the SSAs and TPs calculated 
for each of the resulting meshes were compared with their 
counterparts determined from the CT images of the porous 
media, which were treated as reference values. It may be 
noted that the SSAs of the computational grids are lower 
than the SSAs of the binarized CT images, and the greater 
the accuracy of the grid, the higher the specific surface val-
ue (Fig. 8 and 9).

Fig. 5. Mesh generation time for meshes of varying degrees of 
detail generated from tomographic images. 

Fig. 6. Time required to generate meshes as a function of the num-
ber of cells in the generated meshes.

Fig. 7. Example of the cross-section through calculated grids: 
a) m10, b) m20, c) m30, d) m40. Colour: beige – the area where 
the mesh was created is marked, red – the space separating the 
pores from the solid phase (based on a tomographic scan), dark 
gray – the space treated by the mesh as grains.
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The TPs of the computational grids are usually lower 
than the TPs of the images (Fig. 10); however, the relation-
ship between greater mesh accuracy and higher porosity of 
the mesh (Fig. 11) is not as clearly apparent as in the case 
of the SSA. 

The grids created were used to simulate saturated flow 
in a pore medium. Based on the fluid velocity and the pres-
sure values of the input and output patches, the coefficients 
of saturated water conductivity, Ksat, were calculated for 
each calculation grid and then compared with other grids 
(Fig. 12). The estimated values of the saturated conductiv-
ities determined for the finest m40 meshes were treated as 
reference values.

The estimated error values ΔKsat are shown in Table 3. 
An evaluation method for the evaluation of the error of esti-
mation of the SWC based on an analysis of the KC equation 
was proposed. The development of the proposed error esti-
mation method is formally correct, although it is based on 
the assumption of the correctness of the KC equation which 
may be disputed in the context of specific pore media. It is 
important to note that the proposed method for SWC error 

Fig. 9. Specific surface areas of the computational grids as a func-
tion of the specific surface area of binarized images.

Fig. 8. Specific surface areas of computational grids (m10, m20, 
m30, m40) normalized to the value of the specific surface of the 
binarized image (ref_img).

Fig. 10. Total porosity of the computational grids (m10, m20, 
m30, m40) and the corresponding binarized image (ref_img).

Fig. 11. Total porosity of the computational grids as a function of 
the total porosity of the binarized images.

Fig. 12. Values of simulated SWC for different grids normalized 
for the value of saturated conductivity simulated for the finest 
m40 grid.
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estimation may be applied to any CFD approach of SWC 
modelling based on CT pore media images. The only input 
parameters of this method are easily determined; the SSA 
and the TP of the numerical mesh as well as the CT image 
of the pore medium. 

As Table 3 and Fig. 12 show, the proposed method 
for determining the errors in the numerical assessment of 
hydraulic conductivity seems to work well. While the SWC 
value estimated for the m40 grid, may be considered as 
optimal, it is significantly different from the SWC values 
estimated for other grids, it always remains in the range 
determined by the error bars of SWC estimated for less 
accurate grids. In addition, for all of the samples studied, 
the absolute value of the error monotonically decreases as 
the mesh more accurately reproduces the pore space, in the 
following order: m10→ m20→m30→m40.The root mean 
square values of the saturation coefficient error are also pre-
sented in Table 3, where the reference value is the series of 
conductivity coefficients for the m40 grid.

Histograms of the fluid velocities were calculated from 
the distribution of velocities in each set of computational 
cells. From a sample histogram for sample s2a, in Fig. 13 
one may observe significantly fewer cells at the lowest 
speeds for the grid with the lowest accuracy of mapping 
the pore network. 

In the mesh of lower accuracy, there are few locations 
with a velocity value significantly higher than average, 
while in the more accurate mesh, the distribution of veloc-
ities is more homogenous. These findings are congruent 

with the histogram (Fig. 13) – the more ways water can 
flow through the sample, the lower the values of the flow 
are in specific points within it.

CONCLUSIONS

1. The more detailed the mesh is, the more accurate the 
results of the simulations are. Mesh precision is especially 
important for modelling processes in complex geometries, 

Ta b l e  3. Values of the numerically estimated SWC coefficient together with their errors (calculated based on equation 10), the root 
mean square value of the RMSE error calculated from a comparison of the series of Ksat coefficients for the m10, m20, and m30 grids 
with the values of Ksat for the m40 grid

Mesh m10 m20 m30 m40

Sample Ksat

(ms-1)
ΔKsat

(ms-1)
Ksat

(ms-1)
ΔKsat

(ms-1)
Ksat

(ms-1)
ΔKsat

(ms-1)
Ksat

(ms-1)
ΔKsat

(ms-1)
s1a 5.60 × 10-4 3.75 × 10-4 5.33 × 10-4 1.27 × 10-4 5.02 × 10-4 5.62 × 10-5 4.98 × 10-4 2.83 × 10-5

s1b 5.06 × 10-4 3.36 × 10-4 4.88 × 10-4 1.08 × 10-4 4.57 × 10-4 4.42 × 10-5 4.63 × 10-4 2.08 × 10-5

s2a 2.23 × 10-4 2.47 × 10-4 2.37 × 10-4 7.94 × 10-5 2.24 × 10-4 3.12 × 10-5 2.22 × 10-4 1.46 × 10-5

s2b 2.25 × 10-4 2.50 × 10-4 2.38 × 10-4 8.09 × 10-5 2.24 × 10-4 3.19 × 10-5 2.23 × 10-4 1.53 × 10-5

s3a 9.01 × 10-5 1.93 × 10-4 1.40 × 10-4 7.36 × 10-5 1.35 × 10-4 2.66 × 10-5 1.33 × 10-4 1.11 × 10-5

s3b 6.85 × 10-5 1.64 × 10-4 1.21 × 10-4 6.86 × 10-5 1.17 × 10-4 2.59 × 10-5 1.16 × 10-4 1.15 × 10-5

s4a 3.97 × 10-5 1.47 × 10-4 1.09 × 10-4 4.85 × 10-5 1.06 × 10-4 1.42 × 10-5 1.03 × 10-4 8.36 × 10-6

s4b 1.81 × 10-5 1.07 × 10-4 5.37 × 10-5 5.33 × 10-5 5.64 × 10-5 1.97 × 10-5 5.61 × 10-5 8.91 × 10-6

s5a – – 1.12 × 10-5 1.65 × 10-5 1.50 × 10-5 7.57 × 10-6 1.55 × 10-5 4.98 × 10-6

s5b – – 1.44 × 10-6 3.85 × 10-6 3.56 × 10-6 2.67 × 10-6 4.01 × 10-6 1.60 × 10-6

s6a – – 1.17 × 10-5 1.47 × 10-5 1.40 × 10-5 6.49 × 10-6 1.41 × 10-5 3.80 × 10-6

s6b – – 1.42 × 10-5 1.67 × 10-5 1.64 × 10-5 7.12 × 10-6 1.66 × 10-5 4.02 × 10-6

RMSE
(ms-1) 4.35 × 10-5 1.42×10-5 2.42×10-6 –

Fig. 13. Histogram of velocities in calculation cells for sample 
s2a.
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such as in porous media. For practical reasons related to 
computational complexity and available resources, there 
is always a trade-off between mesh precision and simula-
tion accuracy. In the case of numerical estimations of the 
saturated conductivity of porous media, based on the cases 
analysed, the following recommendation is made: the mini-
mum size of the cell in the meshes used for simulations has 
to be no more than two times the size of the voxel used in 
tomographic scans of the pore medium. 

2. The proposed method for calculating the error of the 
estimation for the value of the saturated water conductivity 
was based on the global numerical mesh geometry charac-
teristics: the specific surface area and the total porosity give 
reasonable error estimates. However, due to the arbitrary 
assumptions made in the method, an additional method of 
validation for the proposed approach should be considered 
in future studies.

3. If the initial background mesh from which the final 
computational grid is built is too coarse, the quality of the 
simulations is negatively affected. In terms of simulation 
quality, the degree of tolerance to grid precision is very low. 
The two finest meshes (m40 and m30) produced reasonable 
results, while the third mesh (m20) produced erroneous 
results. In the case of the coarsest mesh (m10), the simu-
lation results were unacceptable, and for some samples, it 
was not even possible to create the correct grid.

Conflict of interest: The authors declare no conflict of 
interest.
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